深度学习与图像识别:原理与实践在线阅读
会员

深度学习与图像识别:原理与实践

魏溪含 涂铭 张修鹏
开会员,本书免费读 >

计算机网络人工智能10.8万字

更新时间:2019-08-15 18:07:28 最新章节:13.4 本章小结

立即阅读
加书架
下载
听书

书籍简介

本书是一本有关人工智能图像识别应用开发与实践指导类的教材,主要介绍图像处理应用项目开发的基本流程、图像识别处理应用项目关键技术。本书直击当今研究热点,选择有代表性的专题项目而且尽量避免复杂的数学推导,易于读者理解,专注于实战。详细介绍了numpy,knn,线性回归,逻辑回归,神经网络在图像识别上的应用,并为后一部分的深度学习做好铺垫。同时,针对每一个项目介绍项目的应用及意义,该项目的数据特征分析、识别系统设计、图像预处理技术、特征提取技术,以及识别方法等。书中实例程序的框架结构简单,代码简洁,读者可在数字图像处理技术的基础上进一步深化学习内容,提高实践应用能力和项目开发能力。
品牌:机械工业出版社
上架时间:2019-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

同类热门书

最新上架

  • 会员
    本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型
    文亮 江维计算机12.2万字
  • 会员
    本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。
    刘冰计算机0字
  • 会员
    本书全面探讨人工智能三维仿真竞赛,包括竞赛的立意、类型和流程,并详细介绍人工智能三维仿真软件的核心功能,如编程、控制、循迹、定位等的应用。本书首先介绍人工智能三维仿真竞赛的基础知识,为读者打下坚实的理论基础;其次转向人工智能三维仿真软件的详细教学,通过具体案例强化读者的学习效果;最后总结人工智能三维仿真竞赛中的常见任务类型,并结合历史竞赛案例,为读者提供实际参考。本书适合准备参加人工智能三维仿真竞
    李博 金鑫主编计算机4.4万字
  • 会员
    本书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。全书通过共计13章的系统内容,探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响,读者可以了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。
    关东升计算机7字
  • 会员
    全书通过118个实用技巧讲解+118集教学视频演示+160多个素材回复文件+144页PPT教学课件,通过“提问生成+修改润色+热门模板+应用案例”4大专项内容,帮助小白快速成为AI文案高手!本书具体内容包括16种AI提问技巧、13种指令优化技巧、11种高效提问技巧、9种文案修改技巧、7种文案润色方法、11类营销文案指令模板、12类办公文案指令模板、13类自媒体文案指令模板、12类教育学术文案指令模
    AIGC文画学院编著计算机11.6万字
  • 会员
    本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。
    刘萌雪 赵建涛 屈高翔计算机19.1万字
  • 会员
    本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、
    唐宇迪 史卫亚 罗召勇 李琳 侯惠芳编著计算机0字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字
  • 会员
    本书是关于如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安·拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。
    (美)塞巴斯蒂安·拉施卡计算机13.8万字