§1.5 无穷小量与无穷大量
1.5.1 无穷小量
1.无穷小量的定义
观察下列极限的特点:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00036012.jpg?sign=1739692012-ncPWQfJomvhZruBfa5zTE2BPRDIE9Ijy-0-8da07d3f9c8bab1f863e96ed0542675d)
给出如下定义:
定义1 如果,那么函数f(x)称为在x→x0(或x→∞)时的无穷小量,简称无穷小.
发现:(1)无穷小定义也适用于当x→ ,x→
,x→-∞,x→+∞时.
(2)一般地,无穷小要指明其自变量的变化趋势.例如,当x→2时 ,所以函数x-2是当x→2时的无穷小,而当x→3时,
,所以x-2不是x→3时的无穷小.
(3)不要把无穷小与很小的数混为一谈,无穷小是一个过程,一个变量;一般说来,无穷小表达的是量的变化状态,而不是量的大小.故绝对值很小的常数及负无穷大都不是无穷小,而零是常数中唯一的无穷小量.
2.无穷小与函数极限的关系
定理1 的充分必要条件是f(x)=A+α(x)且
.
证明 仅就x→x0的情形来证,其他情形同理.
必要性设,则
.令α(x)=f(x)-A,即当x→x0时,α(x)=f(x)-A是无穷小,则f(x)=A+α.
充分性设f(x)=A+α,其中α(x)是x→x0时的无穷小,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00037010.jpg?sign=1739692012-oojOCh8WshrOz8Ty0TlSx25sHAiWhW7O-0-86103adfcda727b704715c7098a1059c)
3.无穷小的性质
(1)有限个无穷小的代数和仍然是无穷小.
(2)有界函数与无穷小的乘积仍是无穷小.
推论 常数与无穷小的乘积仍是无穷小.
(3)有限个无穷小量乘积仍是无穷小.
例1 求下列极限
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00037011.jpg?sign=1739692012-3Q1XOskqxaQwnf6NmlRhnUChJBGVyrkD-0-fb9531dfb14008a54b2a7310510bde8b)
解 (1)由于不存在,所以不能利用极限运算法则求此极限,但因为
,且
,即
为有界函数,则由性质(2),推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00037016.jpg?sign=1739692012-mlcC33ZE4i6GzJUBWSzo02icmXPMiD3o-0-61bb39e15d0d69dd3623e25ac439c3ff)
(2)当x→∞时都是无穷小,所以由性质(1)推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00037018.jpg?sign=1739692012-8YQYarOu2ZxwB3ztFFbjLI1A7OojRBKX-0-d90ffeaa527f2fee6502b5b7bac6e76e)
例2 求极限.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00037020.jpg?sign=1739692012-all49y1TlXIOO6xGWOv8fgEpnAewozt2-0-32007cc683dbfe68ac17bb14ca3acab3)
发现:无穷多个无穷小的和不一定是无穷小.