1.6.1 函数连续的概念
函数连续反映在几何上就是一条连续不断的曲线,如图1-23所示;函数在某点不连续反映在几何上就是在某点断开的一条曲线,如图1-24所示.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040002.jpg?sign=1739691892-m702W5lEpmxq3eek97dMycBW1FP3WFks-0-7aaea0f28b7ff040df0ddcaefb398b1a)
图 1-23
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040003.jpg?sign=1739691892-HchnGqExfyGsmaodD7cUXzj5bgfB0CDY-0-afb37a29dbc25266d49e499f69c31fe5)
图 1-24
分别观察函数f(x)和g(x)在点x0的特点,给出如下定义.
定义1 设函数y=f(x)在点x0的某一邻域内有定义,如果
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040004.jpg?sign=1739691892-qJEkCTFmRFFOtmxZEQVDRM5EDFHRJLoz-0-9204d2a404173cfb16cd654b0c05a866)
那么就称函数y=f(x)在点x0处连续,并称x0是y=f(x)的连续点.
发现: ,即为当自变量x→x0时,f(x)→f(x0),可表示为
Δx=x-x0→0时,Δy=f(x)-f(x0)→0,
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040006.jpg?sign=1739691892-H2f1z0hXUqmvYE6ZUmPVaqDR7Qm1bdDl-0-82f15320d8b98497e1904ceb6db782ab)
由连续的定义可以看出,连续是通过极限来定义的,在极限的定义中我们曾定义单侧极限,即左极限和右极限,所以相应地也给出单侧连续定义,即左连续及右连续.
定义2 如果
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040007.jpg?sign=1739691892-OIHb0cBfBxpDhl5BXlo58PfaAnerUleB-0-3aa98b1feda45d5332dd084e5fa1410d)
那么称函数y=f(x)在点x0处左连续或左连续.左、右连续也可以用增量的形式表示:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00040008.jpg?sign=1739691892-SL2QucAkVk5eUWOOQGkeCfRjqDrsN0tx-0-77b2d837be70b61e92b1b01b08592184)
定理1 函数在一点x0处连续的充分必要条件是在点x0处既左连续又右连续,即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00041001.jpg?sign=1739691892-gFjGHPQEkObhhNR57NFGkblOcZog6f3f-0-1b37579b56af50a15458cd553d942c33)
例1 讨论函数在x=0处的连续性.
解 因为函数定义域为R,0∈R,且f(0)=0,又无穷小与有界函数乘积仍是无穷小,得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00041003.jpg?sign=1739691892-3oFDP3NVgyoVsS4Vgkcqv4y3bgxeBTFX-0-c3d0721edd3198ccaaae35fc2bfebcc4)
故有
根据定义1,函数f(x)在x=0处是连续的.
例2 证明函数y=sinx在其定义域内连续.
证明 任取x0∈(-∞,+∞),只需证明函数在x0处连续.由和差化积公式得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00041005.jpg?sign=1739691892-5ibcmDBzlXyu4JKBcml7v4ghFRPy3tCo-0-f4fd0253e425f51065989e8d0498410f)
因为当Δx→0时, ,
是有界函数,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00041008.jpg?sign=1739691892-pTjkd0e2z1lHyVOwpZrYPQseoCf0XcEk-0-f94efa0db788f3e55f92f94d9cf281b6)
所以函数y=sinx在点x0处连续,由于x0是区间(-∞,+∞)内任取的,故y=sinx在其定义域(-∞,+∞)内连续.
类似地可以证明y=cosx在其定义域(-∞,+∞)内是连续的.
发现:
由例2不难发现,函数在区间的连续概念如下:
定义3 如果函数y=f(x)在开区间(a,b)内的每一点都连续,则称函数y=f(x)在开区间(a,b)内连续,并称函数y=f(x)是开区间(a,b)内的连续函数.
如果函数f(x)在(a,b)内连续,且在左端点x=a处右连续,右端点x=b处左连续,则称函数y=f(x)在闭区间[a,b]上连续.
若函数f(x)在其定义域内连续,则称函数f(x)为连续函数.
例3 讨论函数的连续性.
解 因为函数定义域为R>,0∈R,当x>0时,任取x0∈(0,+∞),
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00041011.jpg?sign=1739691892-wERsWAg0jBSebjkwpWkMjnyahtW63r7r-0-cdc25dc649db9c25584aea2a5cd62588)
故f(x)在区间(0,+∞)内连续.
当x<0时,任取x0∈(-∞,0),因为,故f(x)在区间(-∞,0)内连续.
又因为且
,得
,所以函数f(x)在点x=0处连续.
综上所述,函数f(x)是连续函数.
发现:对于分段函数的连续性,除了讨论每一分段的连续性外,还必须讨论定义区间分界点处的连续性.