2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)′≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058002.jpg?sign=1739691445-R8gAuhHaNsuhaJ3FynglBxplLXtq05HQ-0-83cdf17dc8d7815ef314d9d1e5528584)
证明由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058003.jpg?sign=1739691445-wO17jg7KQtzp7iETBpJDVMMec5EAvNhF-0-609a8bb2d545c0c382a377add761d022)
函数x=φ(y)在区间I内可导且φ(y)′≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058004.jpg?sign=1739691445-OToxYG5NudqJCTn5youeoLSwsI3saiWJ-0-dc1e7517a3ed26c6f2ef5b0bf839872a)
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058005.jpg?sign=1739691445-BXQErsW10uiTSGISNG4vpA8Yq7JCqmnv-0-881d462067c83027a57e5f6e2fcdd363)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058008.jpg?sign=1739691445-VsizpMkqqM9Zrlt0q4jI1wuPVLoNeaUj-0-4877042a59058388fb14988be7a0a777)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059001.jpg?sign=1739691445-mnJTqMHNmIvxhPTvprOhfzPKyDI32hmG-0-a91b2be0e127303e6fecd79812e51878)
所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059002.jpg?sign=1739691445-3OHPknh37W0IZDBZngVw8lkYZGcjQptM-0-4293bfd464cc3c751e3abb9b32b2b0d8)
同理可推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059003.jpg?sign=1739691445-qkc55wV7YT7t5YB906iGmn3VZMmmpuwx-0-2803bb97146bdf293c0de1c87ab93cd1)
例7 求函数的导数.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739691445-f9j9iejsI75nK7gRI9hiE5f6iyaVafj4-0-299293c5aa45927620fab2e9d46aac77)