2.3.2 初等函数的导数
通过以上的探讨,已经解决了常数和基本初等函数、函数的和、差、积、商、复合函数等的求导问题,也就是初等函数的求导.为了便于熟记和运用,一并总结如下:
1.基本初等函数求导公式
(1)(c)′=0; (2)(xα)′=αxα-1;
(3)(sinx)′=cosx; (4)(cosx)′=-sinx;
(5)(tanx)′=sec2x; (6)(cotx)′=-csc2x;
(7)(secx)′=secx·tanx; (8)(cscx)′=-cscx·cotx;
(9)(ax)′=ax·lna; (10)(ex)′=ex;
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00061002.jpg?sign=1739628199-ZPiLd6P83oMDQ6miVBlHkG8vwaW6eWYh-0-0ec7a3fb7b262f1af303b5beb4ff347c)
常用的特殊公式:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00061003.jpg?sign=1739628199-DZEmekR0g9feRiHvvlDSJdGMOB3DTOoB-0-6aaeed7d84b4e9c632306f4b67464913)
2.求导法则
(1)(u±v)′=u′±v′;
(2)(uv)′=u′v+uv′,[cu(x)]′=cu′(x)(c为常数);
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00061004.jpg?sign=1739628199-k0EPR3jeHl9pU1ixNgqD3IIOwYncPtqr-0-4b7bc6b483d026b0e4a98796d6336d5a)
(4)反函数求导法则;
(5)复合函数求导法则y′x=y′u·u′x.
例5 求下列函数的导数.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00062002.jpg?sign=1739628199-79fYAtD7Na81VPvFgIuVYoGp9IJ4bZk1-0-50fe2717e2cfbbb01103555ec92c1702)
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00062003.jpg?sign=1739628199-IwMWIDDHQbl5PY1DyuOgHqz0G020ZLFv-0-6ff4bef2b34ff9957eb412da41a3ef7f)
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00062004.jpg?sign=1739628199-13Qaq6FmoSUNwppiIHLNajIuttrd6yWJ-0-6a3aa16881f0f36ed496cc0ddd1a198b)