- 全国大学生数学竞赛辅导指南(第2版)
- 张天德 窦慧 崔玉泉 王玮编著
- 1351字
- 2024-11-05 01:32:34
第七届全国大学生数学竞赛预赛(2015年非数学类)
试题
一、计算下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739621216-9Ypz8BvH8zqUu6qCEuoC3GxfH2WeySnx-0-78fca68922507f2cac1de1ea013ee284)
(2)设函数z=z(x,y)由方程所决定,其中F(u,v)具有连续的偏导数,且xFu+yFv≠0,则
.(本小题结果要求不显含F及其偏导数)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面与曲面z=x2+y2所围区域的体积为________.
(4)函数在(-5,5]内的傅里叶级数在x=0收敛的值为________.
(5)设区间(0,+∞)上的函数u(x)定义为,则u(x)的初等函数表达式为________.
二、(12分)设M是以三个正半轴为母线的半圆锥面,求其方程.
三、(12分)设f(x)在(a,b)内二次可导,且存在常数α,β使得对于∀x∈(a,b),f′(x)=αf(x)+βf″(x),证明f(x)在(a,b)内无穷次可导.
四、(14分)求幂级数的收敛域与和函数.
五、(16分)设函数f在[0,1]上连续,且.试证:
(1)∃x0∈[0,1],使得|f(x0)|>4;(2)∃x1∈[0,1],使得|f(x1)|=4.
六、(16分)设f(x,y)在x2+y2≤1上有连续的二阶偏导数,.若f(0,0)=0,fx(0,0)=fy(0,0)=0,证明
.
参考答案
一、解 (1)由于,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739621216-Ujq8F3LpjdmGYtWND9ujXO24fF2sxdV3-0-2bc95c22d836adefb23fef8f47b26ce0)
由夹逼准则,可得.
(2)方程两端关于x求偏导数,可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1739621216-28WyPqISqVhJBEhIYXMfI7Wp573ou8v6-0-4c2a3b2d9f36c57a1b01346f2f4e541b)
类似地,对y求偏导数可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1739621216-sNEsCq3LclqoQ1ekqaGvxYQh07Te1qgj-0-3bced1eb3effbf7b627c313a8593f7f0)
于是,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0005.jpg?sign=1739621216-SsTcdYQRw8c0ILlC6qh3EEE3gle9WsMw-0-a4a06eb6b94696fb5bb7ba010b910783)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面为
2(x-1)-2(y+1)-(z-3)=0,即z=2x-2y-1.
联立得所围区域在xOy面上的投影D为
D={(x,y)|(x-1)2+(y+1)2≤1}.
所求体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0007.jpg?sign=1739621216-3NZWl1Os4xnLYe9APw919IRXsMWUZU02-0-0ec7cbbf099d5b0712d7dd229b1f4969)
令x-1=rcost,y+1=rsint,则dσ=rdtdr,D:所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739621216-bSXZi8PgVr8Yh1UDkgHDIdAOd2CWoHH6-0-6c012830dc430606ef616c07a7c49248)
(4)由狄利克雷收敛定理,得.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0011.jpg?sign=1739621216-5Xo27CTGpkC7XVKhgJ1aLrC1QMyBUSxK-0-ee9b0b9988335174cd9bd192132ed0f6)
所以.
二、解 显然O(0,0,0)为M的顶点,A(1,0,0),B(0,1,0),C(0,0,1)在M上.由A、B、C三点决定的平面x+y+z=1与球面x2+y2+z2=1的交线L是M的准线.
设P(x,y,z)是M上的点,(u,v,w)是M的母线OP与L的交点,则OP的方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0013.jpg?sign=1739621216-RxEfgAFIvL0PhFVTmuEx7YsrDokW3tqz-0-5079ee180cfe0eceeefd611119cef5a9)
代入准线方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0014.jpg?sign=1739621216-X02aoufkfyCcqTWBujiwns8bpEDolsav-0-1ae102f032edbb71f01a461b9a323945)
消去t,得圆锥面M的方程为xy+yz+zx=0.
三、证明 (1)若β=0,则∀x∈(a,b),有
f′(x)=αf(x),f″(x)=α2f(x),…,f(n)(x)=αnf(x),…,
从而f(x)在(a,b)内无穷次可导.
(2)若β≠0,则∀x∈(a,b),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1739621216-okZrQC5n16NiE3AZCs9r11Rdqu0TJpS8-0-39345420281295b2b105886dd8a17749)
(1)
其中.
因为(1)式右端可导,从而有
f‴(x)=A1f″(x)+B1f′(x).
设f(n)(x)=A1f(n-1)(x)+B1f(n-2)(x),n>1,则
f(n+1)(x)=A1f(n)(x)+B1f(n-1)(x).
所以,f(x)在(a,b)内无穷次可导.
四、解 因,所以收敛半径R=+∞,收敛域为(-∞,+∞).由
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1739621216-tiJIruox60D6Lth40FEHSLByvXyq2W0w-0-ba05c3e68cf1265c26399eadf82698cd)
及幂级数的收敛域都为(-∞,+∞),得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0006.jpg?sign=1739621216-oKRPVasfdzPch2Kh5RL0utYf9eMkxLDH-0-4abe73a506ea6f68feaba2e4e687c592)
用S1(x),S2(x),S3(x)分别表示上式右端三个幂级数的和,依据ex的幂级数展开式可得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0007.jpg?sign=1739621216-PTaGss7xACRbkvUTksozIfHyyQYiUxj6-0-64adee87f895db72df834a0c58789dc1)
综合上述讨论,可得幂级数的和函数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0008.jpg?sign=1739621216-X4TPF3qznbYmk77iOxVclZVSAhpWqRSm-0-e8e2de782cf8ca777ee7294bf31b79ee)
五、证明 (1)反证法.若∀x∈[0,1],|f(x)|≤4,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0009.jpg?sign=1739621216-qDIjL9sg0SFCht2VN3bMWyuu41OAG1qm-0-66527cf8eceb0058d360421092e89666)
因此,.而
,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0012.jpg?sign=1739621216-c6DVqb2ikbwiA6O0rIzLzEnEA0bV71OW-0-769cf0838fad830b72246115cef62f4f)
所以对于任意的x∈[0,1],|f(x)|=4.又由f(x)的连续性知,
f(x)≡4 或 f(x)≡-4.
这与条件矛盾.所以∃x0∈[0,1],使得
|f(x0)|>4.
(2)先证∃x2∈[0,1]使得|f(x2)|<4.若不然,∀x∈[0,1],|f(x)|≥4,则f(x)≥4或f(x)≤-4恒成立,这与矛盾.
再由f(x)的连续性及(1)的结果,利用介值定理,可得∃x1∈[0,1]使得|f(x1)|=4.
六、证明 在(0,0)处展开f(x,y)得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739621216-UspWW6lsfSoxTLQWBXgqNoXrkCE3mn9n-0-ade28d321ac843bd1c80ec33f16c4e6e)
记,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739621216-nGAXq6iaH4qmxpIhGCYUFfj5fSFb1e5f-0-f32ec3ba776dc331199b8ad6a0c4f635)
由于以及
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1739621216-RHL8k2wlHZQ3ipS3ghWpD8UqImUuryuM-0-63279d348ef394c888faca3e2c904e44)
于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1739621216-PMGa2NeiJoEXDhIXl2b8cUsE2BBSDczy-0-01b23287ea3a9a81650126fa05a34ec5)
即,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1739621216-FKUxvzaRTcJ4bWAO2ePF1vAuld37aXay-0-1af69de96dc1a638dffe580ec2b8fa8f)