- 全国大学生数学竞赛辅导指南(第2版)
- 张天德 窦慧 崔玉泉 王玮编著
- 982字
- 2024-11-05 01:32:32
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739446703-0GxFJLzaLxpBbGvkGXQ5Q79TCZjIJIf0-0-1938cf799c44c0ab135f5e25310f08a5)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739446703-eyT8AYcW2un7agIIDoW57Zu4WJBrN5kr-0-8cbbc31750070fd7af3e03d5f1a3bf6a)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739446703-dH6qbbK2UIQUlVQpEX5fDlemQdhDTKZj-0-2ef56b55d3419c6168e50f1477934e6e)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739446703-UqVHdsM7lcme8Jj7ShX7lU4oKjEhKf8n-0-c9213ea747d2aa7d7a1f4bb29f9845f2)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739446703-Ov08skx6WtfBlRlKKXuypaNCOK2BPham-0-8bfc6e3e497e0af4af84bd2947abbe18)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739446703-B6KMpgu7IOljL3D7xnKnsbL6ZtCbgtKk-0-1e83b7a3a937c51d275cdc19bc49ab92)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739446703-Q1X2O7AIPJJwAOEfUf45Wg0YnycyG9k7-0-def0b61d3d3dcb6e4b2e1927836c316d)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739446703-65dIJWGLVQ3KXJpG9PEzkbKjIgBxhLar-0-47a37627be4cb096d9e2b54ef2e34ffd)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739446703-wBhJheFA8gSrbfbHADKJOAIa1yUy71GL-0-b2b0a4e9920a77c12ecabc157e3fd4c8)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739446703-tQaL4IBaNMA8FrXxeEztR9GO48dbzCaB-0-ce56e3ef9eea4cf4bef3bdbab0bcca3c)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739446703-W3BI0edylrjSq5Gg8FqiEgyh6D8DPaqi-0-0aab6c32c5ed7257965fe699a3ea131b)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739446703-LAnMMjAH7IHGfhPpoiQeYHzDhhwkLudZ-0-722ab8ae42f1c15fbd4df09e69578107)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739446703-wGe3Y1F4PHR0PNcmdbaK7eMBChF1EwLr-0-b42622f24f2ddf3d8a581363f03c7403)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739446703-WpvKKopftrHEXo5eYk1BSIlPmQlo4Xeu-0-37f4975f13d43d12036f786d86f619d4)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739446703-WmkBpCGlqBHQtipnweL4qeN473UtEJ8X-0-40179fec298798e8a2a9b9630b52403a)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739446703-8b0CmpE7i00EAtnTn3LiycbfRYyrU5bH-0-80f823bfb77d80f80a03e8eaf8ec006e)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739446703-suS6MDOE05kVAQBqKK6dVjOWtNOQ3npV-0-ec2b5ed861d34f064238947d18950b7d)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739446703-yFCdUXbYaQluiSR1XcTPO6ijitQDrnz4-0-024b282b1df20fec63691976111108c5)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739446703-XdheL1aNopRF7lmbWUnomxde4l8arnzD-0-9454bd5f85c9fdd1c0e3f946a16f2f5d)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739446703-fdBJ9hGWIyKLDL8ETLWSbgNm5PkuCDsA-0-b443201357ea34372039e85a03d12fc7)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739446703-aZCP4vG0kq1MaoEB8r9tZ3lT57p9vOz7-0-956a879d6cd6a2c443b96814b4e55c05)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739446703-zimCf3qHQIbnzYwyfsteSSzQYQ0AN0bt-0-58a6a410959e1dbfbecdc6c25546f863)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739446703-6nduZuHpTGHKCgSYpRVNxfqPK3qgxO0P-0-168b251609ded30de8592162ec7922b1)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739446703-wcOcbBI337tmUBRGe7o51CpxkmiUsjhV-0-decb7580d1f640064297afa70921d0c8)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739446703-5Bak7q150Rik2PMMuiYVIc31zr2YoFqT-0-40205e394aa77abb2f57b631af93e142)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739446703-0dTJTmmGXtE5SqGiCxl3cQcUx32MkTyH-0-e5c7efbc88a1056cdee952bf58bfe6cd)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739446703-ePrDmklfCSyZJ9kamrHvhmFhqdWahk6G-0-d48380ae0d86567aefafec5da96273b7)