- 复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 1141字
- 2021-05-28 21:10:04
10.3 名校考研真题详解
一、判断题
1.若f(x)恒正连续,且收敛,则必有
( )[上海交通大学研、浙江大学研、南京师范大学2006研]
【答案】错
【解析】举反例:利用反常积分概念,很明显可知满足题意,但是
二、解答题
581.如果广义积分(其中a是瑕点)收敛,那么
收敛.并举例说明命题的逆不成立.[中国科学院研]
证明:由收敛,根据柯西准则,
存在δ>0,只要
,
总有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1374.jpg?sign=1739638505-JQuuRgQDmpX0WcoaSIujvb2hhjjftzJb-0-733af9c319abef649541ccef493a8624)
利用定积分的绝对值不等式,又有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1375.jpg?sign=1739638505-kuG3dOTrOEAdEhStc4rzydhpXxKIJCTu-0-1dc17742ce802822bec7f9f8148729df)
再由柯西收敛准则的充分性可知收敛.
命题的逆不成立,例如:
设,令
,则
而由狄利克雷法可以判定
是条件收敛的,从而可知
收敛但
不收敛.
596.积分是否收敛?是否绝对收敛?证明所述结论.[北京大学研]
解:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1384.jpg?sign=1739638505-6N7KCObKj9KdemtKifvc9K56aBRMZxP1-0-9a13d2a82a2d290ed8168391083de170)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1385.jpg?sign=1739638505-t1vy4ouQqfzt9w8MDfmIaA1nUeRmwjc3-0-3aedc2b73e8fb02a7ce0d012142be020)
积分是以x=0为瑕点的瑕积分,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1387.jpg?sign=1739638505-exXoZDuL3vwCOnrCNvTKRPNo0sE7pOuB-0-249ceb3fd10c410cf51eece90c24efa9)
所以与
同阶,所以
收敛.
而,所以
绝对收敛,积分
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1393.jpg?sign=1739638505-eZD2hwycb0uEMdxPCDSrayTM11dbmxHp-0-0c458a7f78f310d081d1246ab5da5363)
是无穷积分,当x>1时,,可利用
的马克劳林公式得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1397.jpg?sign=1739638505-hYWTJzczSFm4E3UAcFC9xmSoB86kg43p-0-1f6d06e14465cc1a1820658be6268591)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1398.jpg?sign=1739638505-Si9ihnVZhzt6PSoqCs02vj4iGDLNuWAe-0-c43440703e63a6bff6d06f24b76d3ad2)
已知条件收敛,而
绝对收敛,所以无穷积分
条件收敛但不绝对收敛.
综合可知:条件收敛.
617.计算积分[武汉大学研]
解:设显然
在SA上可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1406.jpg?sign=1739638505-t6LxCnocM5kqrbZd1cQl3kotDCDA5lia-0-6e7f15a92653074b6703a6ef053df106)
作半径为a和的
圆D1和D2,使得
,由
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1412.jpg?sign=1739638505-vxSsnvgZZiQp9tXFXTEefD4ImJ5ZhCJy-0-be131ce8dc2829f987c7a53f7a461c3c)
而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1413.jpg?sign=1739638505-vkPfHJISz9ZMAxjze4Q0GHuNs8bB54qo-0-48bd785b6d9a1ef44d6e44580dc3144e)
类似且有
由夹逼原则可得
,
即
所以
1.求[中山大学2007研]
解:由于,所以
绝对收敛.
1.求[南京大学研]
解:令,则原式变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1424.jpg?sign=1739638505-4Ao62DfbwqT2Jw5MfB7LRfXa5nMsDKE3-0-2feb5c5aeccfe8f1447e91c0235d03e6)
1.设函数f(x)在区间[0,+∞)上连续,0<a<b.
(1)证明:如果,则
(2)证明:如果积分收敛,则
[中北大学研、北京交通大学2006研]
证明:(1)对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1430.jpg?sign=1739638505-92lf92o2MoPbeKcnVW3XElEBLexyhaeC-0-d2e22b60dc7cdd54e5fecddccb28bac8)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1431.jpg?sign=1739638505-DXyRoUIb2CPhAcMwHtHt4Qs08P5rAwvM-0-1832c4a50e450570a7c59ff753994777)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1432.jpg?sign=1739638505-lRDAQ2tfg9ZuwDs6TGUG2NLHfO5yDi8N-0-a098d9e3a8e5056d8453f9ea9810f617)
其中ξ介于aα与bα之间,η介于aβ与bβ之间.令则同时有
由f(x)的连续性及f(+∞)存在性,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1435.jpg?sign=1739638505-JczLkHneRZrK8uLDZCds9A8Oco6qrJ1M-0-9f7403a4b21eb12a11f42f1b17c203a9)
(2)与(1)的证明完全类似.对任意的,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1437.jpg?sign=1739638505-XnIzmV4Ge9uDZIvvR1ttc2AuQB57e9To-0-a52b858ea0243a443ded9de748d16bec)
在上式右端的两个积分中分别进行变量替换ax=t和bx=t,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1438.jpg?sign=1739638505-6Fl3rG50rCrbisDtZHKYlUN03XaIhyEo-0-dfb1cd014afc7e466e3d3b3bd2872f1f)
由积分第一中值定理,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1439.jpg?sign=1739638505-dusa4ShRt7KKxt9wm7KPMnibonuNbPwo-0-f6e296e8a3c6e389f1bc9fc69dad6559)
其中ζ介于aα与bα之间.令,则同时有
由f(x)的连续性及
收敛,即有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1443.jpg?sign=1739638505-cYOuvM0agU5DBCijQSiA8F0riNQsPrDE-0-317552024b753e6cd5ff9d5e541b8cb6)
1.设对任意的A>0,f(x)在[0,A]上正常可积,且收敛,令
,
试证明φ(x)在(0,+∞)内至少有一个零点.[南京大学研]
证明:由φ(x)的表达式可知.因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1447.jpg?sign=1739638505-uFd68oZ4Wwdd5kF688PS1Om1h927Mq16-0-b850bd241f2e66c8acd009b31a3ae962)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1448.jpg?sign=1739638505-oXvZeTqYehkTUyqA1btjkfuHHNTXS4hH-0-1c6f4964bd85855b2763b8a49c075906)
根据连续函数的介值性可得,φ(x)在(0,+∞)内至少有一个零点.
1.讨论的收敛性.[中国地质大学研]
解:令
当α>1时,取δ充分小,使α-δ>1,因为,所以
与
同时收敛,故
收敛.
当α≤1时,由于,所以
与
同时发散,故
发散.
又因为,所以
仅当α-1<1,即α<2时收敛.
综上所述,仅当1<α<2时,积分收敛.
1.讨论的收敛性.[复旦大学研]
解:由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1460.jpg?sign=1739638505-BCZGwI1kZxkcvLvkH4TASmFViVYskvtO-0-12397a43da64112508ac7fada701090c)
所以当0≤p<q-1时,收敛;当p≥q-1时,
发散.由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1463.jpg?sign=1739638505-8oXCIohgM7dwuZC5LjemqSy0KkpgcgMP-0-435d9cfda57eabbf40610eeba6c14e8e)
所以当p>-2时,收敛;当p≤-2时,
发散.故当-2<p<q-1时,
收敛;当p≤-2或p≥q-1时,
发散.
1.f(x)在(0,1]上单调,且广义积分收敛,证明:
存在.[上海大学2006研]
证明:不妨设f(x)在(0,1]上单调递增,则由知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1471.jpg?sign=1739638505-ymmccIp5A6T9fS3ohzTtrPJUHJ8P2owU-0-bc97667fdf904a2cdec7643d44b6124e)
而故由夹逼法知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1473.jpg?sign=1739638505-EI8OvT9tNq9i60JseDfGy4Lag7RQSf9g-0-227c61a105430264ee71e3cb81f13cc1)