- 复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 12字
- 2021-05-28 21:10:05
第2部分 函数项级数
第11章 函数项级数、幂级数
11.1 复习笔记
一、函数项级数的一致收敛
1.函数项级数的概念
(1)函数项级数定义
设是定义在实数集X上的函数,则称
是函数项级数,并称
是这一级数的n次部分和.
(2)收敛性定义
如果对X中的一点x0,数项级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1477.jpg?sign=1739695352-KSNMm5h9zXuNuiBZftjsGee9gbhN3xEW-0-d8a4c061771081c24989c85fd56a8813)
收敛,就称函数项级数在x0点收敛,否则就说它在x0点发散.如果对X中任何一点x,级数收敛,则函数项级数
在X上收敛(即在每一点都收敛).这时,对每一点
,级数
有和,记此和为S(x),即
可见,S(x)是X上的函数.
2.一致收敛的定义
(1)一致收敛的定义
①设有函数列(或函数项级数
的部分和序列),若对任给的
,存在只依赖于
而不依赖于x0的正整数
,使
时,不等式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1489.jpg?sign=1739695352-NN2xzOYrg4eB08ZEaTLKRzojZwcbRRDo-0-f8a59b4064bb32f0237ed233398049a3)
(对函数项级数,此式也可写为)对X上一切x都成立,则称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1491.jpg?sign=1739695352-QR8MfuYbSMXjPqwJwY4mwA1o19h2t6QN-0-f20370a17c6404c99fe0c15680a27b44)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1492.jpg?sign=1739695352-vVAzV02F8XBFDgruRRuhl12en77mlurH-0-b702a58898cf9b3bd37a98fe38826ca5)
②设如果
就称
在X上一致收敛于
.
(2)内闭一致收敛、收敛、一致收敛的关系
①当在(a,b)内任一闭区间上一致收敛时,称
在区间(a,b)内闭一致收敛;
②函数列在(a,b)一致收敛,则一定内闭一致收敛.但反之不然.但在(a,b)内闭收敛,则它在区间(a,b)也收敛.
(3)一致收敛的柯西充要条件
函数列在X上一致收敛的充要条件为,对任给的
,可得正整数
,使
时,不等式
对任意的正整数p和X上任意的x都成立.
3.一致收敛级数的性质
(1)若在[a,b]上,函数列的每一项
都连续,且
一致收敛于
,则其极限函数
也在[a,b]上连续.
这个定理表明:在定理的条件下,对[a,b]上任一点x0,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1510.jpg?sign=1739695352-iwmBaUp9vDnudz5U908vLWpZBmkaz16O-0-f382312243eeadfe560e30d6eea65e20)
即两个极限运算(一个对x→x0取极限,另一个对n→∞取极限)可以交换顺序.
(2)设在[a,b]上一致收敛于
,每一
都在[a,b]上连续,那么
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1514.jpg?sign=1739695352-BlJTSO8hPc4CvvRxq6wQmgNFCy8Yw1i6-0-4ade730864eae770bddeb0defe0cb4e5)
亦即极限号与积分号可以互换,又函数列也在[a,b]上一致收敛于
(3)若在[a,b]上函数列的每一项都有连续导数,
收敛于
一致收敛于
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1521.jpg?sign=1739695352-s6qNoNhMyynXxWs5jDircxDO1nUkk5X3-0-5c7effaed5730c4032935c5d2d649b1a)
亦即
也就是极限号与求导数号可以交换.又此时在[a,b]上也是一致收敛的.
(4)和的连续性
若在[a,b]上级数的每项
都连续,且
一致收敛于S(x),则S(x)也在[a,b]上连续.
(5)逐项求积
设在[a,b]上一致收敛于
,并且每一
都在[a,b]上连续,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1530.jpg?sign=1739695352-secPA4wRhZdvEl33jn7AqgTxfWhgyAnn-0-ff7dd5055c5b057f64d9567ac3ed8892)
亦即和号可以与积分号交换,又在[a,b]上,函数项级数也一致收敛于
(6)逐项求导
若在[a,b]上,的每一项都具有连续导数
,且
一致收敛于
收敛于
,则
,亦即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1539.jpg?sign=1739695352-AAyJ701Wc3lEXKVAFTEGfPv26NduFhY8-0-928c6c46725ea77f4fa47c2a794777a5)
且一致收敛于S(x).
4.一致收敛级数的判别法
(1)魏尔斯特拉斯判别法
若对充分大的n,恒有实数,使得
对X上任意的x都成立,并且数项级数
收敛,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1544.jpg?sign=1739695352-VfqSUiSGGQqRVXenxE3B4USovbjefrDO-0-b6822d5897e4c3cb779ef54a6b0dce93)
在X上一致收敛.
(2)阿贝尔判别法
若在X上一致收敛,又对X中每一固定的x,数列
单调.而对任意的n和X中每个x,有
(不依赖于x和n的定数),那么
在X上一致收敛.
(3)狄利克雷判别法
的部分和
在X上一致有界,又对X内每个x,数列
单调,并且函数列
在X上一致收敛于零,则
在X上一致收敛.
二、幂级数
1.收敛半径
(1)幂级数定义
形如的函数项级数称为幂级数.它的部分和是多项式,它的一般项为
(2)收敛半径定义
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1556.jpg?sign=1739695352-cYullMKW9MCjGGlDIU5uGzut4pvBoPJ3-0-e7559384dd44db84ef75a237de7a4b1c)
R叫作幂级数的收敛半径.
(3)相关定理
①柯西-阿达马(Hadamard)定理
幂级数在
内绝对收敛,在
内发散.
②阿贝尔第一定理
若在点x=ξ收敛,那么它必在
内绝对收敛,又若
在x=ξ发散,则它必在
也发散.
③阿贝尔第二定理
若的收敛半径为R,则此级数在
内的任一个闭区间[a,b]上一致收敛,也就是在
内闭一致收敛;又若级数在
收敛,则它必在
一致收敛.
2.幂级数的性质
(1)设幂级数的收敛半径为R,则其和函数S(x)在
内连续.又若幂级数在
(或
R)收敛,则S(x)在
(或(
)连续.
(2)设幂级数的收敛半径为R,其和函数为S(x),则在
内幂级数可以逐项积分和逐项微分.即对
内任意一点x,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1580.jpg?sign=1739695352-18KIZaO1tYI12EyayEe0jznsZt5LhjpO-0-c04bde515d54a49c664f0c65ac62a195)
以及
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1581.jpg?sign=1739695352-E7nxYP3u6Hb2k2Ov2o4D2Yujmyk3a6nL-0-7f3de56a8ccfe08e93d87c2d1605a2d9)
并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R.
3.函数的幂级数展开
(1)假若函数f(x)在某点及其某一邻域
内能表示为幂级数,也就是在
内恒有
那么,它在这个邻域内必有任意阶的导数,并且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1586.jpg?sign=1739695352-EVNkmJcU6udhaVz0wiAcJ5PcQSTteX0A-0-c4d818a1f2b37043d7acdcbc44333842)
上式右端的幂级数称为f(x)的泰勒级数.
(2)如果f(x)在点的某个邻域
内有任意阶的导数,不一定有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1590.jpg?sign=1739695352-YVyh0zDCa09B3HO0foOYOilLsEIQdL0a-0-3067684276b7a9bfa6b12e656fe2c7e6)
设余项
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1591.jpg?sign=1739695352-tFebsl3diKwOeSZiy1ZArQXw7cWnBFmI-0-b7bff59bba74ce96a3c7c4321f46b6d4)
只有当余项在这区间内趋于零时,一个任意阶可导的函数能够表示为一个幂级数.
(3)余项的各种形式
①的拉格朗日形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1595.jpg?sign=1739695352-97URRV9DH0hQUYmBC8Map1rvyQDLutL9-0-1a5d6816c3a4120ebadd4ae483db0d57)
其中ξ是介于和x之问的一个数.
②的积分余项形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1598.jpg?sign=1739695352-odRxEfyBeqh4WvmWMlsMlWIr8BBMNW4Y-0-b398542cfb507c60604630472c8a4e84)
③
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1599.jpg?sign=1739695352-cjYI5sar7CQlOsHvoZXA3mq9hmtkMxdj-0-5c23ccb6c32cc27a8af2585c40336499)
其中ξ为,x之间的某一值,这称为柯西余项.
(4)一些基本初等函数的麦克劳林级数
①
②
③
④
⑤
⑥二项式在-1<x<1内,恒有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1606.jpg?sign=1739695352-L4XdxZrHfGQ0crg2tFMAgiBg0cGVLndT-0-c53538bb2c62b9fc7882b869b4783cf1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image1607.jpg?sign=1739695352-J66ngkCpBQ14AsUvKe0hCXAE0MGSRhLH-0-71b64ec0ac43f1899a50e10abcddb401)
三、逼近定理
魏尔斯特拉斯逼近定理
设f(x)是[a,b]上的连续函数,那么对任意给定的ε>0,总存在多项式P(x),使得
.