第1章 Python科学计算环境的安装与简介

1.1 Python简介

Python是一种解释型、面向对象、动态的高级程序设计语言。自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和开发Web系统。目前Python已经成为最受欢迎的程序设计语言之一。

由于Python语言的简洁、易读以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python教授程序设计课程。众多开源的科学计算软件包都提供了Python的调用接口,例如计算机视觉库OpenCV、三维可视化库VTK、复杂网络分析库igraph等。而Python专用的科学计算扩展库就更多了,例如三个十分经典的科学计算扩展库:NumPy、SciPy和matplotlib,它们分别为Python提供了快速数组处理、数值运算以及绘图功能。因此Python语言及其众多的扩展库所构成的开发环境十分适合工程技术、科研人员处理实验数据、制作图表,甚至开发科学计算应用程序。近年随着数据分析扩展库Pandas、机器学习扩展库scikit-learn以及IPython Notebook交互环境的日益成熟,Python也逐渐成为数据分析领域的首选工具。

说起科学计算,首先会被提到的可能是MATLAB。然而除了MATLAB的一些专业性很强的工具箱目前还无法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:

●首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。

●其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、更易维护的代码。

●最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。