- 人工智能:智能机器人
- 陆建峰
- 619字
- 2021-03-28 22:52:38
2.3 通用旋转变换
我们已经在前面研究了绕x、y和z轴旋转的旋转坐标变换。下面来研究最一般的情况,即研究某个绕着从原点出发的任一向量(轴)旋转角度θ时的旋转坐标变换。
2.3.1 通用旋转变换公式
设f为坐标系{C}的z轴上的单位向量,即:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_1.jpg?sign=1739436771-UZ8uR83ovXV34Lw3Iqrsb80G5nSCMOmE-0-673fb22f8629aadb86ae12cdc65a7e58)
绕向量f旋转等价于绕坐标系{C}的z轴旋转,即:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_2.jpg?sign=1739436771-EQZnWC7rgK84zRsTPAshPP95izHCjLgN-0-b23647d635c4489d63f97bb3b31ce91c)
如果已知以参考坐标系表示的坐标系{T},那么能够求得以坐标系{C}表示的另一坐标系{S},因为
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_3.jpg?sign=1739436771-AYrk41nZAvgeQeg7kHXJRheEs2uDSiOg-0-0fa49702ac5139d61f084e9568dd2cba)
式中,S表示坐标系{T}相对于坐标系{C}的位置。对S求解得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_4.jpg?sign=1739436771-n0LaTcOwzkq499Z0fxzibTVd3sIWWuNU-0-6e93b98e9ad6e396ae6550fe0595023b)
T 绕f旋转等价于S绕坐标系{C}的z轴旋转,即:
Rot(f,θ)T=CRot(z,θ)S
Rot(f,θ)T=CRot(z,θ)C-1T
于是可得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_5.jpg?sign=1739436771-x0zSZRWXKuqoxketQuVok60AIpfdowF4-0-0987472070369171adaa1c370550d282)
因为f为坐标系{C}的z轴上的单位向量,所以对式(2-34)加以扩展可以发现,Rot(z,θ)C-1仅仅是f的函数,因为
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_42_6.jpg?sign=1739436771-XtFCGMnwbXyMoRgasnXfDSaTNCVqf0fK-0-1ef242bbdb4ee96f30af80b932fdd70d)
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_43_1.jpg?sign=1739436771-8X3XOh22SNrMycbPt6X8tJDoWCiVWYFV-0-b4857ec2e07ffb31cd09ac5db0f8ac9a)
根据正交向量点乘、向量自乘、单位向量和相似矩阵特征值等性质,并令versinθ=1-cosθ,fx=ax,fy=ay,fz=az,f=fxi+fyj+fzk,对式(2-35)进行化简,可得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_43_2.jpg?sign=1739436771-d7ITeaIvsDv6xDJjk6Qs5YOvpMZJCjWM-0-8712d89021d2ae09c4c5c8d26a5d4efb)
这是一个重要的结果。从上述通用旋转变换公式能够求得各个基本旋转变换。例如,当fx=1、fy=0和fz=0时,Rot(f,θ)=Rot(x,θ)。若把这些数值代入式(2-36),可得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_43_3.jpg?sign=1739436771-MGYijWh5KuuXviGLrJOuhmCEOgfd88on-0-992acf9104dbddc899a3ad676fd4ff5e)
这与式(2-24)一致。
2.3.2 等效转角与转轴
对于任一旋转变换,均能够由式(2-36)求得进行等效转角的转轴。已知旋转变换:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_1.jpg?sign=1739436771-kvda21yWL1Cm7WEQ8E8efSO4AsvjgFPg-0-eaebb8da3d9953a155763752feaba325)
令R=Rot(f, θ),即:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_2.jpg?sign=1739436771-3k24drqrTSdqvI35v69DLa7Q5GGZmr2z-0-771dea1af254ad4a633acf3af1f1f72b)
把式(2-37)右边除元素1以外的对角线项分别相加并进行化简,可得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_3.jpg?sign=1739436771-wPiicI9BZKU4S7ihaXLnOhVSuGOAJFHn-0-8b38fc1c85bebae9a73112c08955e92b)
以及
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_4.jpg?sign=1739436771-nQVZLm2UUpMudRCVX1oO9z8w9HQpzf23-0-f7d271bca75ebcb231dedadaadd7fddd)
把式(2-37)中的非对角线项成对相减,可得:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_5.jpg?sign=1739436771-vYGahuNYWkQkCzdDe1re61kE9Of0hWWD-0-324e9460a866656e53915d34484eaf16)
将式(2-40)各行平方相加后,可得:
(ox-ay)2+(ax-nz) 2+(ny-ox) 2=4sin2θ
以及
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_6.jpg?sign=1739436771-qS8YewNFTD6khdaAHvIzu37HuOLWkTP6-0-3b142b9d650c7e628ef7e2536ac64427)
把旋转规定为绕向量f的正向旋转,使得0≤θ≤180°[16]。这时,式(2-41)中的符号取正号。于是,角度θ被唯一地确定为:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_44_7.jpg?sign=1739436771-wL83Fo0KLY2EeuPoaCKFumnAhx829WwD-0-7b3716ccc413ee345c888504451e4212)
向量f的各分量可由式(2-40)求得,即:
![](https://epubservercos.yuewen.com/FD2240/17725770706724906/epubprivate/OEBPS/Images/38284_45_1.jpg?sign=1739436771-ld2qGwFTnwrL2BkGGznMMXmZprNrYcgs-0-63171b79174dfccb584cc30abaaada24)