SparkSession

SparkSession allows programming with the DataFrame and Dataset APIs. It is a single point of entry for these APIs.

First, we need to create an instance of the SparkConf class and use it to create the SparkSession instance. Consider the following example:

val spConfig = (new SparkConf).setMaster("local").setAppName("SparkApp")
val spark = SparkSession
.builder()
.appName("SparkUserData").config(spConfig)
.getOrCreate()

Next we can use spark object to create a DataFrame:

val user_df = spark.read.format("com.databricks.spark.csv")
.option("delimiter", "|").schema(customSchema)
.load("/home/ubuntu/work/ml-resources/spark-ml/data/ml-100k/u.user")
val first = user_df.first()