Vectors in Spark

Spark MLlib uses Breeze and JBlas for internal linear algebraic operations. It uses its own class to represent a vector defined using the org.apache.spark.mllib.linalg.Vector factory. A local vector has integer-typed and 0-based indices. Its values are stored as double-typed. A local vector is stored on a single machine, and cannot be distributed. Spark MLlib supports two types of local vectors, dense and sparse, created using factory methods.

The following code snippet shows how to create basic sparse and dense vectors in Spark:

val dVectorOne: Vector = Vectors.dense(1.0, 0.0, 2.0) 
println("dVectorOne:" + dVectorOne)
// Sparse vector (1.0, 0.0, 2.0, 3.0)
// corresponding to nonzero entries.
val sVectorOne: Vector = Vectors.sparse(4, Array(0, 2,3),
Array(1.0, 2.0, 3.0))
// Create a sparse vector (1.0, 0.0, 2.0, 2.0) by specifying its
// nonzero entries.
val sVectorTwo: Vector = Vectors.sparse(4, Seq((0, 1.0), (2, 2.0),
(3, 3.0)))

The preceding code produces the following output:

dVectorOne:[1.0,0.0,2.0]
sVectorOne:(4,[0,2,3],[1.0,2.0,3.0])
sVectorTwo:(4,[0,2,3],[1.0,2.0,3.0])

There are various methods exposed by Spark for accessing and discovering vector values as shown next:

val sVectorOneMax = sVectorOne.argmax
val sVectorOneNumNonZeros = sVectorOne.numNonzeros
val sVectorOneSize = sVectorOne.size
val sVectorOneArray = sVectorOne.toArray
val sVectorOneJson = sVectorOne.toJson

println("sVectorOneMax:" + sVectorOneMax)
println("sVectorOneNumNonZeros:" + sVectorOneNumNonZeros)
println("sVectorOneSize:" + sVectorOneSize)
println("sVectorOneArray:" + sVectorOneArray)
println("sVectorOneJson:" + sVectorOneJson)
val dVectorOneToSparse = dVectorOne.toSparse

The preceding code produces the following output:

sVectorOneMax:3
sVectorOneNumNonZeros:3
sVectorOneSize:4
sVectorOneArray:[D@38684d54
sVectorOneJson:{"type":0,"size":4,"indices":[0,2,3],"values":
[1.0,2.0,3.0]}

dVectorOneToSparse:(3,[0,2],[1.0,2.0])