Chapter 2. Creating Attractive Data Visualizations

In this chapter, we will cover:

  • Graphing Anscombe's quartet
  • Choosing seaborn color palettes
  • Choosing matplotlib color maps
  • Interacting with IPython notebook widgets
  • Viewing a matrix of scatterplots
  • Visualizing with d3.js via mpld3
  • Creating heatmaps
  • Combining box plots and kernel density plots with violin plots
  • Visualizing network graphs with hive plots
  • Displaying geographical maps
  • Using ggplot2-like plots
  • Highlighting data points with influence plots