- 迁移学习算法:应用与实践
- 庄福振 朱勇椿等
- 202字
- 2023-08-28 20:24:58
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_01.jpg?sign=1739615962-K24DDjpXmDJUfIgfaaSdopq0BhLgbIU6-0-7eb76cffa78bbb35ef2ab88b1c4d90ee)
图4.5 表达图像完整与部分信息的示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_02.jpg?sign=1739615962-KVXpm13sda1pQTX3qw1qRPn638yoMMoD-0-98ddf2b5ab2b0fbd0edfe9367cd22ca7)
图4.7 单源领域自适应与多源领域自适应。在单源领域适应中,源领域和目标领域的分布不能很好地匹配,而在多源领域适应中,由于多个源领域之间的分布偏移,匹配所有源领域和目标领域的分布要困难得多[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_03.jpg?sign=1739615962-K3Pgum5mAM5rfPXY3ogO8TtMwlPMqKcs-0-93bd3dfd1837bc68e8ac28e86cc1f3e8)
图4.8 同时对齐分布和分类器的多源自适应方法[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_01.jpg?sign=1739615962-MZPaOS8e2NJaJviF9oYdnlPhvD6wPeAS-0-5c2c694a0aee91804d396b46a6f184ec)
图5.4 领域对抗神经网络可视化结果[64]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_02.jpg?sign=1739615962-y25qPSUATVKI03FQsxjWqp0RlC5QoBjV-0-16f2c2a72a21edfd5b563d4dbb2a4095)
图6.2 关于TrAdaBoost算法思想的一个直观示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_01.jpg?sign=1739615962-7u5bKUyBDyDCjrY8qBmzeONFWLvWkjQH-0-cc661971aadc490f2a157c2227f0e947)
图6.10 基于锚点的集成学习示意图[100]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_02.jpg?sign=1739615962-dFchHsyN7asCIBPyILRIoHhb3jTTcViq-0-b59400286ace5a17e02b596fe27a0cec)
图8.9 拆分架构[130]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_01.jpg?sign=1739615962-oeU1HCBbqRljLT88JSfUp5Xn4H9u0iO4-0-39fa8928d1fdabfe8170a32a1bb2670a)
图9.4 视图不足假设[136]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_02.jpg?sign=1739615962-b0qSRoQomC9hR1ZO7Oyt3HWVQSxl6laz-0-9d0b4e37656d47edfcb5da14e491f741)
图10.20 风格迁移示意图[202]