![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739947745-Q0t4m1putaNTOGLYr1FIhNlGKrOysNCl-0-e38cd4166f17078f044ffef1fc7e4a7c)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739947745-CajlUH63Ciyrj2sR2OCZWYl0erf3g7fW-0-34558f0090797d6aeaf70b1a9772f7c0)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739947745-lFyvTP9T7qtBk35s4897bNQgz4rpLS1k-0-24389a5e0d78b55e88463fafb69be129)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739947745-RG58zaou8AWd0EGWyBlKQSSP5qnV8uAj-0-e0a4b041fbb925d5cbd2ec87ee4884bb)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739947745-pt0DTcFv3WK7seCcrlxVsfExoISVZGml-0-41577fd089636dfbb1c6dd29e153785f)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739947745-ikXIKvuwfGGPw5HiqmWtzEwOq60CRES3-0-d92f3f30c5ea3f320f79dbe15d8fcdb6)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739947745-hbFNam8Q4dfxOiAwdIWK7atlDkaplkzw-0-460da34723eef5dd1e817780b9b27ce4)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739947745-oglmuiw0RybMoopK3ttBQU9jxtjajvda-0-12553927e8c7aa7dd005971bf20e8f62)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739947745-mhvfUd8RX3xhXoEzS0WkR10aq9iRQcHA-0-29b445530ec5dab9d6051add604f6727)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739947745-pOl67M85SEhBCC5CaIVAlEfhjQmgsY1t-0-b04ee7b6814f984d1009d3e690bb9975)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739947745-GbZYAc45fimLZLPeUIvcvLoDIaDTxm9h-0-9137805d5b67a29bdf2904dd4bbd5081)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739947745-Gz17LK85VWRZQsnXwRoUHyZtwPwkI1xW-0-a07aa102740d298692d5375af7dabed1)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739947745-8XcvVN5tkJeVSTxSbUWRVp6lgyKepwLa-0-6327877d886a234807c544b1dba8f3f1)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739947745-ioonBeUGSnZaycOqH4KQPz5cnGRmCMEJ-0-d88325de2394b46187df0a6e5a81488a)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739947745-itZjtvrF12TikH3Ja0l1nbHBXAK4scp5-0-cdd45d4c1bd885544beeca94d4614bcd)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739947745-ech7U6kP8Cbg9JDBtbZWGaC89BnUIY9p-0-66cd8eb8b46681214e4a7d779c2157c3)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739947745-G5MSH9rS0gHXZnMor6gMJ7QBT7calneS-0-0263dec3b2ff5323031f779ec2d5f103)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739947745-mldK3UmflA9ytGrVlmS4RlmaGOFYbaTh-0-a71aa5143893240f8dc74fe60dd6ec8a)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739947745-pLhQwAqG8xjRf1sJR8LpNmIG5ranCXhi-0-e5a4f7270edb7a2fc889381348662677)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739947745-lBnFTlSqgYfrWhmjifonuogVi7zjUHtw-0-622d2179eea5f5b53fa20f8544e013f4)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739947745-jRqZOfv8DO1T9IsgcF7LDR6urFxLFj3A-0-f2fef05cf6fb20896b8938d74402c70b)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739947745-CAKYLA2u26jmWdTcRbY0o99DmqHnzbKr-0-4dc52c943b74f8588ac9c9075245cccf)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739947745-zCZSh388ufGTguEzou1DwMepDmmnUqWc-0-92942c428af9dcc124e97d89ce4e0b0c)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739947745-7RMTIcPt96vmZE865HKgnlbaKMhUpmHa-0-4a881ea5b44e5824da978c5a3caa6c82)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739947745-5xZXKP11rnumJeDPuzSEFwTdqkUdkpw9-0-c875f1baea608292cf167f11eac5388c)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739947745-1u32pqmWnt4uW4m3049STo9GVp0bU4vt-0-b58d85accdfae39ad6f10a0dcf806e78)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739947745-ZYJo4UrAddtjLmVXhdzaZqsOAJMXGvAu-0-3588845e25c2a144708142f8ffe77e4d)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739947745-AVQYDez3id5DPOtGOodF5jsiAFepVIZu-0-796484d7315b5e68829f3b00f8c98eb8)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739947745-cOVIM2pPeGflxWIJpbyeVZZiB3tC5V34-0-81cc81c5656d2fe90d42100dee4fa83b)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739947745-JfOeXhFMH3n8irC14YimiZmvfgfKvQuc-0-cd0c6c58f4923b9ca21ff73f963f4ccf)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739947745-4gBqhshJTEU7ktNUdOt1OLBBy8a2wAqi-0-d96c5b285d9cee2109f7d1b3fd425ab4)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739947745-AW6RsYCS4hTk0MnNnay003V9Rqno4Ggj-0-7fd1c03674210f420fa3d9224d49f875)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739947745-LDmHpPBKrBw0tOabECVVDa7mKLvj8CBd-0-cf8693c14f7a3a188a32a7e10da60d69)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739947745-WEGPaageF7jsfJFuz35lU0k3YCqO31q8-0-765fa76fc90b1d7880ff069262476a4c)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739947745-DbDT4ADSQAwD3WGAWKoc3Q3l2l8CuHfN-0-2099c0a9db3cb1130b4ce6dd2f640fef)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739947745-cBzbaQj9wcc2gbvcpvawGv00g3XzNp5c-0-a3f2d16f1c0e72531130bbc864d04b89)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739947745-dx7eekVtdYdWApnajcakR4tIXVanijIz-0-07f3bebf3260251cedc971ce5b44f00a)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739947745-INBSyDBEkSDh1E3Yq1GCWE5UKn1J19K3-0-94bcdec610158f0dda3feb7d2bcaca3d)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739947745-6asmbQyoDTmwc5IXx01ZRTmjlazAkBZB-0-9085bdbdb3655b21f2b34053d15253a5)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739947745-AnnvRFFagurNcbJkBkZz5Y9eeORysOst-0-62bd0ded484d2c5237049dafa7fff70c)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739947745-YfLugGuKIHRKmtzYK4m083bF83JYebSr-0-337947414c0ed49e619b5db9267be5c5)
图10-6 层与桶的流量关系